浅谈建筑施工中如何运用管桩基础施工技术

来源:建筑界编辑:黄子俊发布时间:2020-03-24 14:37:19

[摘要]   中图分类号:TU241 文章标识码:A 文章编号:1672-2310(2015)11-001-98  一、工程概况  某建筑公司在丘陵山地建一住宅小区,

  中图分类号:TU241 文章标识码:A 文章编号:1672-2310(2015)11-001-98

  一、工程概况

  某建筑公司在丘陵山地建一住宅小区,该住宅区占地十多万平方米,有一栋主体11层、地下室1层的框架剪力墙、连体带人防地下室结构的楼在建,由于周围各栋楼桩基已经建好,施工场地受局限。原地质勘探显示桩基持力层为强风化细砂岩,埋深12~30m之间,原定使用锤击管桩,但试击七根有四根断裂,情况有异。

  二、地质情况

  再次钻探结果显示:桩基持力层有埋深10~21m之间的灰岩,且存在溶洞发育,主要存在杂填土、有机质黏土层以及微风化灰岩。

  三、设计变更

  局部将锤击法改为静压法施工,由于场地受限静压机无法施工区域以及强风化细砂岩地质区域用锤击法施工;桩径Ф400单桩竖向承载力特征值降为720kN,桩径Ф500降为1120kN;由于桩径Ф400管桩断桩率大,将其改为Ф500管桩,断桩率由28.7%降至5.9%。

  四、实例分析

  该工程断桩率过高,基础设计以及正式施工几经变更,用锤击法与静压法共用代替全部采用锤击法、将桩径Ф400改为桩径Ф500管桩、断桩再利用以及采用合理的基础形式等措施,应对灰岩地质运用管桩基础遇到的问题。究其原因,可以从以下几个方面来看:

  (一)地质资料不准确

  原地质勘探资料显示,有一钻探孔位在埋深15m处发现灰岩,按照钻探规范,应对该区域密集钻探以确定灰岩范围与埋深,是否存在溶洞及其分布情况等地质状况需要探查清楚,原勘探资料的失误是导致基础设计拟定不恰当的施工方案,在施工时出现异常情况。

  (二)灰岩地质特征

  灰岩主要成分为方解石、石英,隐晶质结构,致密块状构造。岩体坚硬,桩基不易打入;埋深在10~16m之间,且表层土质松软,容易造成管桩在底部破损断裂;存在溶洞发育、断裂带等,灰岩分布不规律,持力层灰岩面深度分布不均,极大增加了打桩的难度。

  (三)基础设计原因

  溶洞发育、岩面不规则、打桩难以进入基岩等对桩基的稳定性有较大影响,单桩竖向承载力不高。灰岩地质复杂,施工容易造成断桩情况出现,传统在一般地质情况下的设计方法并不适用于灰岩地质。基础设计所用桩径偏小,Ф400刚度不足以承受压力造成断裂,将桩径Ф400改为Ф500的管桩后才得以进行正常施工。

  (四)施工配合

  施工之前需要配合设计,管桩的长度以及施工压力等需要根据实际的地质情况进行控制,施工期间的失误漏洞要及时修正、补充,保证各项技术参数正确无误。

  五、质量控制措施

  (一)掌握详实的地质资料

  对灰岩的分布与走势以及溶洞情况要准确掌握,必须对灰岩分布区域做密集钻探,特别是桩基位置,如果不能准确掌握,可以结合物探方式,保证地质资料的准确度,是设计与施工正常进行的前提。

  (二)选择合理的施工方法

  由于灰岩地质的复杂性,桩基容易断裂,因而防止断桩出现以及减少断桩是工程设计施工的重点。静压法可以由压力表读数直观判断管桩承载力,推断出管桩的完整性,减轻岩面反作用力,减小断桩率。虽然锤击法与静压法各有优势,但在灰岩地质适宜采用静压法。

  (三)控制断桩率

  正常地质条件下断桩率较为容易控制,断桩率减低,但在灰岩地质施工,断桩情况难以避免,可以适当增加桩径应对,断桩率应控制在在4~8%内。

  (四)管桩选用

  在施工过程中,桩径Ф400的管桩在施工中容易断裂,改用为桩径Ф500的管桩时断桩数量明显减少,因而加大桩径能有效减小断桩率,如下表1所示。由于灰岩地质对抗弯设计要求较高,因而需要改变只重视抗压设计不关注抗弯设计的情况,选用抗弯性能强的B型管桩,而不宜用抗压性能强的A型管桩。

  表1

  施工方法锤击法静压法小计

  管桩值么ф/cm 400 400 400 500(壁厚100) 500(壁厚100)

  单桩竖向承载力特征值要求/kN 720 720 720 720 1120

  桩长/m 15~29 13~21 10~21 10~21 10~21

  持力层土层强风化岩灰岩灰岩灰岩灰岩

  终止压力/kN2560 2720 3840

  总量/根 105 92 101 102 46 446

  断桩量/根 0 21 29 6 7 63

  断桩比例% 0 22.8 28.7 5.9 15.2 14.1

  (五)确定静压桩的施工终止压力及承载力

  加大静压压力可以有效解决灰岩地质打桩困难的问题,但压力过大则容易引起断桩,所以要求压力控制在桩身竖向承载压力的60%内,由表1数据可见,压力增加到桩身竖向承载压力的80%时,断桩率高达15~30%。静压桩的承载力取值模式为:终止压力≤60%桩身竖向极限承载压力;单桩竖向承载力特征值=终止压力÷2.5~3.5。

  (六)控制断桩

  根据施工实际情况,“尖口型”十字桩尖打桩效果比“平底型”桩尖好。使用“平底型”桩尖时,由于岩面高低不平,桩端处支撑点不平容易产生偏心作用,支撑点移动导致压断桩身;“尖口型”十字桩承受的岩面反作用力居中,避免偏心作用发生,且桩尖刚度低,高压下桩尖变钝抵消压桩力,断桩情况减少。同时,控制桩端进入持力层,桩端一旦触及灰岩层,压力达到终压要求时应停止压进,防止由于压力过大造成的断桩;复压压力应控制在终止压力值内。

  (七) 利用断桩

  断桩一般会在补桩后被废弃,但有些断桩在压入土中后能达到稳定的终止压力,管桩碎裂部分能改善土层结构,利于控制周围其他管桩施工时的终止压力。

  六、结语

  本文论述了在灰岩地质使用管桩基础需要注意的问题以及应对措施,需要根据灰岩的地质特征,在管桩的型号选择、桩身竖向承载压力以及静压桩终止压力确定等方面,应根据施工经验以及具体地质状况采取适当的措施,进行断桩再利用,取得安全保障与经济效益。

管桩,施工,施工技术,建筑施工,基础,如何

延展阅读

相关文章